Warning: file_put_contents(): Only 0 of 103020 bytes written, possibly out of free disk space in /home/swarmy/public_html/wp-includes/SimplePie/Cache/File.php on line 113

Warning: /home/swarmy/public_html/wp-content/cache is not writeable. Make sure you've set the correct relative or absolute path, and that the location is server-writable. in /home/swarmy/public_html/wp-includes/class-simplepie.php on line 1429

Graphene Image

In simple terms, graphene, is a thin layer of pure carbon; it is a single, tightly packed layer of carbon atoms that are bonded together in a hexagonal honeycomb lattice. In more complex terms, it is an allotrope of carbon in the structure of a plane of sp2 bonded atoms with a molecule bond length of 0.142 nanometres. Layers of graphene stacked on top of each other form graphite, with an interplanar spacing of 0.335 nanometres.

It is the thinnest compound known to man at one atom thick, the lightest material known (with 1 square meter coming in at around 0.77 milligrams), the strongest compound discovered (between 100-300 times stronger than steel and with a tensile stiffness of 150,000,000 psi), the best conductor of heat at room temperature (at (4.84±0.44) × 103 to (5.30±0.48) × 103 W·m−1·K−1) and also the best conductor of electricity known (studies have shown electron mobility at values of more than 15,000 cm2·V−1·s−1). Other notable properties of graphene are its unique levels of light absorption at πα ≈ 2.3% of white light, and its potential suitability for use in spin transport.

Bearing this in mind, you might be surprised to know that carbon is the second most abundant mass within the human body and the fourth most abundant element in the universe (by mass), after hydrogen, helium and oxygen. This makes carbon the chemical basis for all known life on earth, so therefore graphene could well be an ecologically friendly, sustainable solution for an almost limitless number of applications. Since the discovery (or more accurately, the mechanical obtainment) of graphene, advancements within different scientific disciplines have exploded, with huge gains being made particularly in electronics and biotechnology already.

The problem that prevented graphene from initially being available for developmental research in commercial uses was that the creation of high quality graphene was a very expensive and complex process (of chemical vapour disposition) that involved the use of toxic chemicals to grow graphene as a monolayer by exposing Platinum, Nickel or Titanium Carbide to ethylene or benzene at high temperatures. Also, it was previously impossible to grow graphene layers on a large scale using crystalline epitaxy on anything other than a metallic substrate. This severely limited its use in electronics as it was difficult, at that time, to separate graphene layers from its metallic substrate without damaging the graphene.

However, studies in 2012 found that by analysing graphene’s interfacial adhesive energy, it is possible to effectually separate graphene from the metallic board on which it is grown, whilst also being able to reuse the board for future applications theoretically an infinite number of times, therefore reducing the toxic waste previously created by this process. Furthermore, the quality of the graphene that was separated by using this method was sufficiently high enough to create molecular electronic devices successfully.

While this research is very highly regarded, the quality of the graphene produced will still be the limiting factor in technological applications. Once graphene can be produced on very thin pieces of metal or other arbitrary surfaces (of tens of nanometres thick) using chemical vapour disposition at low temperatures and then separated in a way that can control such impurities as ripples, doping levels and domain size whilst also controlling the number and relative crystallographic orientation of the graphene layers, then we will start to see graphene become more widely utilized as production techniques become more simplified and cost-effective.

Graphene In A Nutshell

Read my in depth look at graphene called ‘Graphene in A Nutshell’. It introduces, informs and tells the past, present and future of graphene. Read more >>

Properties Of Graphene

An explanation of the properties of graphene. Learn about its fundamental characteristics, electronic properties and optical properties. Read more >>

Graphene Applications And Uses

What are the uses and applications of graphene? How will it be used to change the world that we live in? Find out here. Read more >>

The Price Of Graphene

How much does graphene cost? And, what factors affect the price of graphene? Those questions are answered here. Read more >>

- – - – - – - – - – - – - – - – - – - – - – - – - – - – - – - – - – - – - – -

  • Organic-inorganic heterostructures with programmable electronic properties

    - Graphene News -- ScienceDaily
    Researchers have devised a novel supramolecular strategy to introduce tunable 1D periodic potentials upon self-assembly of ad hoc organic building blocks on graphene, opening the way to the realization of hybrid organic-inorganic multilayer materials with unique electronic and optical properties.

  • Graphene-based neural probes probe brain activity in high resolution

    - Graphene News -- ScienceDaily
    Graphene-based transistors enable a flexible neural probe with excellent signal-to-noise ratio. Such probes are useful for examining neural activity for understanding diseases, as well as in neuroprosthetics for control of artificial limbs.

  • How graphene could cool smartphone, computer and other electronics chips

    - Graphene News -- ScienceDaily
    With graphene, researchers have discovered a powerful way to cool tiny chips – key components of electronic devices with billions of transistors apiece.

  • Promising results obtained with a new electrocatalyst that reduces the need for platinum

    - Graphene News -- ScienceDaily
    A group researchers has developed a manufacturing method for electrocatalysts that only uses one hundredth of the amount of platinum generally used in commercial products. The activity achieved using the new material is similar to that of commercial electrocatalysts. The method is based on the special characteristics of carbon nanotubes.

  • Hand-held X-ray sources

    - Graphene News -- ScienceDaily
    Electronic oscillations in graphene could make a tabletop — or even handheld — source of X-rays a reality, report researchers.

  • A tough coat for silicon

    - Graphene News -- ScienceDaily
    Supercritical carbon dioxide delivers protective molecules to semiconductor surfaces, report researchers in a new article.

  • Caught on camera: Chemical reactions 'filmed' at the single-molecule level

    - Graphene News -- ScienceDaily
    Scientists have succeeded in ‘filming’ inter-molecular chemical reactions – using the electron beam of a transmission electron microscope (TEM) as a stop-frame imaging tool. They have also discovered that the electron beam can be simultaneously tuned to stimulate specific chemical reactions by using it as a source of energy as well as an imaging tool.

  • Scientists discover new 'boat' form of promising semiconductor GeSe

    - Graphene News -- ScienceDaily
    Researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now. This so-called beta-GeSe compound has a ring type structure like graphene and could have similarly valuable properties for electronic applications.


Leave a Reply